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Abstract

This article examines graph entropy measures that depend on the number of dominating and
power-dominating sets. To quantify the structural complexity of a graph structure, one uses
graph entropies. It is easy to compute these properties for smaller networks, and if reliable ap-
proximations are developed, similar metrics can also be used for larger graphs. Using various
graph invariants, many graph entropy measures have already been established and computed.
So, in this work, a new graph entropy measure, namely, power domination entropy, using the
power domination polynomial, is introduced. The domination and power domination polyno-
mials of graphs are used to determine the number of dominating and power dominating sets.
Let D(G, ξ) represent the collection of all dominating sets of G with size ξ, dξ(G) = |D(G, ξ)|,
and γs be the total number of dominating sets of G. Then, the domination entropy of G with n

nodes is defined as Idom(G) = −
n∑

ξ=1

dξ(G)

γs(G)
log

(
dξ(G)

γs(G)

)
. The domination and power domi-

nation entropies for a few graphs are further computed. Following that, a comparison between
the domination and power domination entropies of several graphs is provided.
Keywords: graph entropy measures; domination; domination polynomial; power domination;

power domination polynomial.
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1 Introduction

The characterization of the complexity of network systems is one of the major difficulties faced
bymodern research [15, 26]. There are twomain methods for measuring complexity: computable
and uncomputable. Traditional computable complexitymeasurements are graph entropies, which
are derived from Shannon’s entropy formula [28]. The concept of graph entropy, introduced by
Rashevsky [25] in 1955, is based on partitioning vertices into equivalence classes according to their
degrees. Mowshowitz [22] later expanded this framework by incorporating graph automorphism
groups. Building on these foundations, Mowshowitz [20], in 1968, applied information theory to
explore both chemical and mathematical structures, establishing a broader relevance of entropy
measures in these fields. The automorphismgroupof a graph’s symmetry serves as the foundation
for this measure. Larger entropy values result from poor symmetry and high element variety in a
complex system [7, 5], and vice versa. Using graph entropies, one can compare the complicated
graph structures. As noted in [29], it could be useful to define new graph entropies based on
different graph invariants.

Domination entropy, an entropy measure derived from the dominating sets, is presented in
[27]. This motivated us to derive the domination entropy of more graph structures. In this paper,
the domination entropy is computed for certain graphs. Sometimes two different graph structures
give the same entropy measure, which is one of the most challenging problems in this area. So,
finding a suitable graph entropy measure to analyze the structure of a graph is more important.
Since the power domination problem is computationally demanding, in this paper, a new graph
entropy measure, namely, power domination entropy, using the power dominating sets, is intro-
duced and studied for various graphs, besides the comparison between domination entropy and
power domination entropy of some graphs. And we conclude that domination entropy has more
discriminating power than power domination entropy. In order to define this entropy, Dehmer’s
information functional approach [12] is used. Throughout this paper, we refer to the dominating
set as DS, the domination polynomial as DP, and the power domination polynomial as PDP for
the sake of convenience.

1.1 Basic definitions

Let G be a simple graph with the node set V (G) and the line set E(G). The path, cycle, com-
plete, wheel and star graph of order n are denoted by Pn, Cn, Kn, Wn and Sn, respectively. The
n-barbell graph Barn on 2n nodes is formed by joining two copies of a complete graph Kn by a
single line, shown in Figure 1.

Figure 1: The barbell graph of order 16, Bar8.

The graphwith nodes a1, a2, . . . , a2s is knownas the cocktail party graphCP (s) of order 2s if all
pairs of distinct nodes form lines in this graph, except for the pairs {a1, a2}, {a3, a4}, . . . , {a2s−1, a2s}.
The r-book graphBr is constructed by bonding r copies of C4 along a common line, see Figure 2.
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Figure 2: The book graphBr .

The graph created by joining n copies of C3 with a common node is called the friendship (or
Dutch-Windmill) graph Fn. A cone graph, also known as a generalized wheel graph, Cm,n, is
defined by the graph join Cm +Kn. A fan graph Fm,n is Km + Pn. The graph formed by taking
m copies ofKn with a node in common is called the (m,n)-windmill graphWm

n . This means that
mKn−1 +K1 is isomorphic to the (m,n)-windmill graph.

Two nodes x, y ∈ V (G) are adjacent, or neighbors, if {x, y} ∈ E(G).
Definition 1.1. [30] If every node outside ofD ⊆ V (G) is neighbor to at least one node insideD, thenD
is a DS of G. γ(G) represents the domination number of G, which is the lowest of the cardinalities of the
DS of G.

Refer [1, 16] for further information on domination in graphs.
Definition 1.2. [30] If a set Q of nodes observes every node in G by the following rules:

• all nodes in Q and all neighbors of nodes in Q are observed,

• whenever a node v inG is observed and all but one of its neighbors, say w, are observed, then the node
w is also observed by v,

then it is considered a power dominating set (PDS). The lowest size of a PDS ofG is its power domination
number, γp(G).

Definition 1.3. [2] The collection of all dominating sets ofG with size ξ is represented byD(G, ξ) and let
dξ(G) = |D(G, ξ)|. Then the DP, D(G, y) of G is,

D(G, y) =

|V (G)|∑
ξ=γ(G)

dξ(G)yξ.

Definition 1.4. [2] Let γs(G) represents the total number of sets that dominate G. Then,

γs(G) =

|V (G)|∑
ξ=γ(G)

dξ(G).

Or, γs(G) is obtained by putting y=1 in the domination polynomial.

Definition 1.5. [9] The collection of all PDS of G with size ξ is represented by P (G, ξ), and pξ(G) =
|P (G, ξ)|. Thus, the following equation introduces the PDP, P (G, y) of G:

P (G, y) =

|V (G)|∑
ξ=γp(G)

pξ(G)yξ.
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Denote the total number of PDS by (γp)s. Consider the cycleC4 : x1x2x3x4. To power dominate
C4, one node that is enough to power dominate the other three nodes. Thus γp(C4) = 1. The set of
PDS ofC4 with cardinality one is P (G, 1) = {{x1}, {x2}, {x3}, {x4}}, and p1(G) = 4. Furthermore,
the set of PDSofC4 with cardinality two isP (G, 2) = {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4},
{x3, x4}}, and p2(G) = 6, the set of PDS of C4 with cardinality three is P (G, 3) = {{x1, x2, x3},
{x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}}, and p3(G) = 4.

Finally, the PDS of C4 with cardinality four is P (G, 4) = {x1, x2, x3, x4}, and p4(G) = 1. Con-
sequently, P (C4, y) = y4 + 4y3 + 6y2 + 4y. It is noted that there are fifteen PDS in total for C4, i.e,
(γp)s(C4) = 15, and it is derived straight from the power domination polynomial’s coefficients.
As a result, the following definition can be stated:
Definition 1.6. [9] For a given G, suppose (γp)s represents the total number of PDS. Then,

(γp)s =

|V (G)|∑
ξ=γp(G)

pξ(G).

Or, (γp)s is obtained by putting y=1 in the power domination polynomial.

Definition 1.7. [12] Dehmer’s information functional approach is utilised to define the entropy of G.
“Given T = {t1, t2, . . . , tr}, allow f : T → R+ to be an information functional, such that T is a set of
elements of G. Then, the following definition of entropy is given:

If (G) = −
r∑

i=1

f(ti)
r∑

j=1

f(tj)
log

 f(ti)
r∑

j=1

f(tj)



= log

(
r∑

i=1

f(ti)

)
−

r∑
i=1

f(ti) log f(ti)

r∑
j=1

f(tj)
,

where logarithmic phrases have base 2".

Definition 1.8. [27] The domination entropy of G with n nodes is defined by,

Idom(G) = If (G) = −
n∑

ξ=1

dξ(G)

γs(G)
log

(
dξ(G)

γs(G)

)
.

In this case, dξ(G) = 0 for every ξ < γ(G), and dn−1(G) = n. With a new information func-
tional, the power domination entropy can now be defined.
Example 1.1. If P is a Petersen graph, then Idom(P ) = 2.05754.

Solution: The DP of the petersen graph P is,

D(P, x) =x10 +

(
10

9

)
x9 +

(
10

8

)
x8 +

(
10

7

)
x7 +

((
10

6

)
− 10

)
x6+((

10

5

)
− 60

)
x5 + 75x4 + 10x3.
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Thus, by Definition 1.4,

γs(P ) =

10∑
i=3

di(P )

= 1 +

(
10

9

)
+

(
10

8

)
+

(
10

7

)
+

(
10

6

)
− 10 +

(
10

5

)
− 60 + 75 + 10

= 443.

Then,

Idom(P ) = log 443− 1

443

(
10∑
i=3

di(G) log (di(G))

)
= 2.05754.

Definition 1.9. By taking the information functional f = pξ(G) in the Definition 1.7 , the power domi-
nation entropy is defined as,

Ipdom(G) = If (G) = −
n∑

ξ=1

pξ(G)

(γp)s(G)
log

(
pξ(G)

(γp)s(G)

)
,

where pξ(G) = 0 for all ξ < γp(G), pn−1(G) = n, & pn(G) = 1.

2 Related Works

In the past fewyears, numerous investigations have been conducted to ascertain the complexity
of the networks. Graph entropy measurements have been widely applied in transdisciplinary re-
search, encompassing fields such as biology, chemistry, and information science [8]. Bonchev [4]
provided foundational insights into using information-theoretic indices for characterizing chem-
ical structures, establishing their importance in quantitative analysis. Extending these concepts,
Bonchev and Buck [6] explored quantitative measures of network complexity, highlighting their
relevance in diverse scientific domains. More recently, Chen et al. [11] investigated network aes-
thetics based on symmetry, demonstrating the evolving applications of entropy measures in un-
derstanding complex networks. Mowshowitz [21] applied information theory to analyze chemical
and mathematical structures, pioneering the use of entropy measures in graph theory.

Randic and Plavsic [24] further characterized molecular complexity, emphasizing the signif-
icance of structural properties in chemistry. Their work introduced novel methods to quantify
molecular complexity and demonstrated its relevance to quantum chemical applications [23].
Building on these ideas, Mowshowitz and Dehmer [20] revisited graph entropy and complexity,
offering a contemporary perspective on its role in understanding graph structures. Most graph
entropies are derived from the Shannon entropy to determine the graphs’ complexity. Numer-
ous graph entropy measures are available in the literature, and they are derived from the graph’s
order, degree sequence, distance, characteristic polynomials, and other graph polynomials [14].
Recently, there has been introduction of graph entropies, which are associated with molecular de-
scriptors. The definition of graph entropy measures [10] and their further investigation [29] are
based on matchings and independent sets. Mowshowitz and Dehmer [17] also look into various
relationships between the graph’s complexity and Hosoya entropy. The study [13] applies vari-
ous graph entropies to quantify structural complexity across different application areas, including
biological, social, and technological networks.

273



K. Geethu and A. Parthiban Malaysian J. Math. Sci. 19(1): 269–287(2025) 269 - 287

3 Main Results

This section includes the domination and power domination entropy of some graphs.

3.1 Domination entropy of some graphs

Alikhani and Peng [2] established the concept of domination polynomials. Domination poly-
nomials were also found forKn□K2, Bn, Barn and CP (n) [18, 19]. This study finds the domina-
tion entropy of these graphs using the domination polynomials.
Theorem 3.1. For a book graph Bs with cardinality 2s+ 2, the domination entropy,

Idom(Bs) = log(3s+1 + 22s − 2)− 1

3s+1 + 22s − 2

[( s−1∑
ξ=2

(
2s

ξ − 2

)
log

(
2s

ξ − 2

))
+

(
s2s +

(
2s

s− 2

)
− 2

)
log

(
s2s +

(
2s

s− 2

)
− 2

)
+

2s+1∑
ξ=s+1

((
s

2s+ 1− ξ)

)
2(2s+2)−ξ

+

(
s

2s− ξ

)
2ξ +

(
2s

ξ − 2

))
log

((
s

2s+ 1− ξ

)
2(2s+2)−ξ +

(
s

2s− ξ

)
2ξ +

(
2s

ξ − 2

))]
.

Proof. From [19],

D(Bs, y) = (y2 + 2y)s(2y + 1) + y2(y + 1)2s − 2ys, (1)

and γ(Bs) = 2. By Definition 1.4, γs(Bs) =
2s+2∑
ξ=2

dξ(G) = 3s+1 + 22s − 2. To find the coefficient of

yξ in (1), we first expand (y2 + 2y)s using the binomial theorem as follows,

(y2 + 2y)s =

s∑
j=0

(
s

j

)
(y2)s−j(2y)j =

s∑
j=0

(
s

j

)
2jy2s−j .

Then,

(y2 + 2y)s(2y + 1) =

s∑
j=0

(
s

j

)
2j(2y2s−j+1 + y2s−j) =

s∑
j=0

(
s

j

)
2j+1y2s−j+1 +

s∑
j=0

(
s

j

)
2jy2s−j .

Now, consider y2(y + 1)2s. By using the binomial theorem to expand (y + 1)2s, we have,

y2(y + 1)2s =

2s∑
j=0

(
2s

j

)
yj+2.

To compute the coefficient of yξ, examine each of these expanded terms. First, for
s∑

j=0

(
s

j

)
2j+1y2s−j+1, substitute 2s− j + 1 = ξ, which gives j = 2s+ 1− ξ. The coefficient of yξ in

this term is
(

s

2s+ 1− ξ

)
22s+2−ξ, valid for s+ 1 ≤ ξ ≤ 2s+ 1.
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Next, in
s∑

j=0

(
s

j

)
2jy2s−j , substitute 2s − j = ξ, giving j = 2s − ξ. The coefficient of yξ in this

case is
(

s

2s− ξ

)
2ξ, valid for s ≤ ξ ≤ 2s.

Finally, in
2s∑
j=0

(
2s

j

)
yj+2, substitute j+2 = ξ, yielding j = ξ−2. The coefficient of yξ is

(
2s

ξ − 2

)
,

valid for 2 ≤ ξ ≤ 2s+ 1.

From the above discussions, one can get,

dξ(Bs) =

(
2s

ξ − 2

)
, for 2 ≤ ξ ≤ s− 1,

ds(Bs) = s2s +

(
2s

s− 2

)
− 2,

dξ(Bs) =

(
s

2s+ 1− ξ)

)
2(2s+2)−ξ +

(
s

2s− ξ

)
2ξ +

(
2s

ξ − 2

)
, for s+ 1 ≤ ξ ≤ 2s+ 1.

It is known that d2s+2(Bs) = 1. Thus,

Idom(Bs) = log(3s+1 + 22s − 2)− 1

3s+1 + 22s − 2

[( s−1∑
ξ=2

(
2s

ξ − 2

)
log

(
2s

ξ − 2

))
+

(
s2s +

(
2s

s− 2

)
− 2

)
log

(
s2s +

(
2s

s− 2

)
− 2

)
+

2s+1∑
ξ=s+1

((
s

2s+ 1− ξ)

)
2(2s+2)−ξ

+

(
s

2s− ξ

)
2ξ +

(
2s

ξ − 2

))
log

((
s

2s+ 1− ξ

)
2(2s+2)−ξ +

(
s

2s− ξ

)
2ξ +

(
2s

ξ − 2

))]
.

Theorem 3.2. For a Barm with order 2m, the domination entropy,

Idom(Barm) = log((2m − 1)2)− 1

(2m − 1)2
×

2m∑
j=2

([(
2m

2m− j

)
− 2

(
m

m− j

)]
log

[(
2m

2m− j

)
− 2

(
m

m− j

)])
.

Proof. From [19], D(Barm, y) = ((1 + y)m − 1)2 and γ(Barm) = 2. By Definition 1.4,
γs(Barm) =

2m∑
j=2

dj(Barm) = (2m − 1)2. To find the coefficient of yj from D(Barm, y), we start by
expanding ((1 + y)m − 1)2 as follows,

((1 + y)m − 1)2 =

(
m∑

k=1

(
m

k

)
yk

)2

=

m∑
k=1

m∑
l=1

(
m

k

)(
m

l

)
yk+l.
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Therefore, to get the coefficient of yj , sum the products of binomial coefficients where k+ l = j
within the valid range for k and l. This is given by,

m∑
k=1

(
m

k

)(
m

j − k

)
.

Using the convolution identity for binomial coefficients, we know that,
m∑

k=0

(
m

k

)(
m

j − k

)
=

(
2m

j

)
.

However, since k and j − k must both be at least 1, we need to exclude the cases where k = 0 or
j − k = 0, which results in exclusion of 2

(
m

j

)
.

Thus, the coefficient of yj is
(
2m

j

)
− 2

(
m

j

)
, for 2 ≤ j ≤ 2m. Using the symmetry property,(

2m

j

)
=

(
2m

2m− j

)
and (mj ) = ( m

m− j

)
, where

(
m

m− j

)
= 0 for j > m.

From the above, one can get dj(Barm) =

(
2m

2m− j

)
− 2

(
m

m− j

)
for 2 ≤ j ≤ 2m, where(

m

m− j

)
= 0 for j > m.

Thus, the domination entropy of Barm is,

Idom(Barm) = log((2m − 1)2)− 1

(2m − 1)2
×

2m∑
j=2

([(
2m

2m− j

)
− 2

(
m

m− j

)]
log

[(
2m

2m− j

)
− 2

(
m

m− j

)])
.

Theorem 3.3. For a Kr□K2, the domination entropy,

Idom(Kr□K2) = log((2r − 1)2 + 2)− 1

(2r − 1)2 + 2

[ 2r∑
j=1
j ̸=r

((
2r

2r − j

)
− 2

(
r

r − j

))

log

((
2r

2r − j

)
− 2

(
r

r − j

))
+

((
2r

r

)
log

(
2r

r

))]
.

Proof. It is known that D(Kr□K2, y) = ((1 + y)r − 1)2 + 2yr. From the Definition 1.4,
γs(Kr□K2) =

2r∑
j=1

dj(G) = (2r−1)2+2. To determine the coefficients of the polynomialD(Kr□K2, y),
we first expand ((1 + y)r − 1)2 as follows,

((1 + y)r − 1)2 =

(
r∑

k=1

(
r

k

)
yk

)2

=

2r∑
m=2

(
m−1∑
k=1

(
r

k

)(
r

m− k

))
ym.
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Then,

D(Kr□K2, y) =

2r∑
m=2

(
m−1∑
k=1

(
r

k

)(
r

m− k

))
ym + 2yr.

Therefore, the coefficient of yj for j ̸= r is
j−1∑
k=1

(
r

k

)(
r

j − k

)
=

(
2r

j

)
−
(
r

j

)
and for j = r, the

coefficient is
r−1∑
k=1

(
r

k

)(
r

r − k

)
+ 2 =

(
2r

r

)
−
(
r

r

)
+ 2 =

(
2r

r

)
+ 1.

From the above, one can determine the number of dominating sets as,

dj(Kr□K2) =


(

2r

2r − j

)
−
(

r

r − j

)
, for j ̸= r,(

2r

r

)
+ 1, for j = r,

where for j > r,
(

r

r − j

)
= 0. Therefore, the domination entropy of Kr□K2 is,

Idom(Kr□K2) = log(γs(Kr□K2))−
1

γs(Kr□K2)

2r∑
j=1

dj(Kr□K2) log(dj(Kr□K2))

= log((2r − 1)2 + 2)− 1

(2r − 1)2 + 2

[ 2r∑
j=1
j ̸=r

((
2r

2r − j

)
− 2

(
r

r − j

))

log

((
2r

2r − j

)
− 2

(
r

r − j

))
+

((
2r

r

)
log

(
2r

r

))]
.

Theorem 3.4. Let CP (k) be a cocktail party graph with order 2k. Then,

Idom(CP (k)) = log (22k − 2k − 1)− 1

22k − 2k − 1

(
2k∑
i=2

(
2k

i

)
log

(
2k

i

))
.

Proof. The domination polynomial of CP (k) is D(CP (k), y) = (1 + y)2k − 2ky − 1. Therefore,
γs(CP (k)) = 22k − 2k − 1. By expanding (1 + y)2k using the binomial theorem, we get

(1 + y)2k − 1 =

2k∑
i=1

(
2k

i

)
yi. Then, (1 + y)2k − 2ky − 1 =

2k∑
i=2

(
2k

i

)
yi. Thus, the coefficient of yi in

D(CP (k), y) is
(
2k

i

)
.

From the above, d1(CP (k)) = 0 and di(CP (k)) =

(
2k

i

)
for 2 ≤ i ≤ 2k. Thus,

Idom(CP (k)) = log (22k − 2k − 1)− 1

22k − 2k − 1

(
2k∑
i=2

di(G) log di(G)

)

= log (22k − 2k − 1)− 1

22k − 2k − 1

(
2k∑
i=2

(
2k

i

)
log

(
2k

i

))
.
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3.2 Power domination entropy of some graphs

The power domination polynomial of Kn, Pn, Cn,Wn, Sn and Kn are obtained in [12] and in
this section, power domination entropy of these graphs are obtained. Also, power domination
polynomial andpower domination entropy of someother families of graphs such as Wm

n , Fn, DPn,
Cm,n, and Fm,n are derived.
Theorem 3.5. [12] P (Kn, y) = P (Pn, y) = P (Cn, y) = P (Wn, y) = (y + 1)n − 1.
Theorem 3.6. For a Kn,

Ipdom(Kn) = log (2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
.

Proof. P (Kn, y) = (1+y)n−1 is the PDP ofKn. It follows that (γp)s = 2n−1. The coefficient of yi

in the polynomial P (Kn, y) can be determined by examining its expansion P (Kn, y) =

n∑
i=1

(
n

i

)
yi.

Here, for 1 ≤ i ≤ n, the coefficient of yi is
(
n

i

)
.

Thus, for 1 ≤ i ≤ n, pi(G) =

(
n

i

)
. Furthermore, γp(Kn) = 1.

Hence,

Ipdom(Kn) = log((γp)s)−
1

(γp)s

n∑
i=1

pi(Kn) log(pi(Kn))

= log (2n − 1)− 1

2n − 1

n∑
i=1

(
n

i

)
log

(
n

i

)
.

Remark 3.1. Similarly, one can derive the power domination entropy of Pn, Cn, and Wn as derived in
above theorem since the power domination polynomials of Kn, Pn, Cn, and Wn are the same.
Theorem 3.7. For a Kn, Ipdom(Kn) = −n log n.

Proof. SinceKn is the complement ofKn,Kn be the empty graph onnnodes. Then,P (Kn, y) = yn.
Since the sum of the coefficients of P (Kn, y) is 1, (γp)s(Kn) = 1 and γp(Kn) = 1. Thus,

Ipdom(Kn) = −n log n.

Theorem 3.8. For a Sr,

Ipdom(Sr) = log(2r−1 + r)− 1

2r−1 + r

[ r−3∑
i=2

(
r − 1

i− 1

)
log

(
r − 1

i− 1

)
+(

2(r − 1)

)
log

(
2(r − 1)

)
+ 2 log 2

]
.
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Proof. The power domination polynomial of Sr is P (Sr, y) = y(y + 1)r−1 + yr−1 + (r− 1)yr−2 for
r ≥ 3. Therefore, (γp)s(Sr) = 2r−1 + r. To expand P (Sr, y), we begin by applying the binomial
expansion to y(y + 1)r−1, yielding

r∑
i=1

(
r − 1

i− 1

)
yi. Then,

P (Sr, y) =

r∑
i=1

(
r − 1

i− 1

)
yi + yr−1 + (r − 1)yr−2,

which implies that,

P (Sr, y) = y +

r−3∑
i=2

(
r − 1

i− 1

)
yi + 2(r − 1)yr−2 + 2yr−1 + yr.

Thus from the above, p1(Sr) = 1, pi(Sr) =

(
r − 1

i− 1

)
for 2 ≤ i ≤ r − 3, pr−2(Sr) = 2(r − 1), and

pr−1(Sr) = 2. Hence,

Ipdom(Sr) = log(2r−1 + r)− 1

2r−1 + r

[ r−3∑
i=2

(
r − 1

i− 1

)
log

(
r − 1

i− 1

)
+

(
2(r − 1)

)
log

(
2(r − 1)

)
+ 2 log 2

]
.

Theorem 3.9. [2] Let n1 and n2 be the nodes of graphs G1 and G2, respectively. If nj > 1, then for every
j ∈ {1, 2}, Ij equals the number of isolates of Gj ; otherwise, it equals zero. Assume G = G1 ∨ G2. After
that, P (G; y) = (1 + I1/y)P (G1; y) + (1 + I2/y)P (G2; y) + ((y + 1)n1 − 1)((y + 1)n2 − 1).

Theorem 3.10. P (Wm
n , y) = ((y + 1)n−1 − 1)m + y(y + 1)mn−m.

Proof. SinceWm
n ≃ mKn−1 ∨K1, by Theorem 3.9 it follows that,

P (Wm
n , y) = P (mKn−1 ∨K1; y)

= (1 + 0)P (mKn−1, y) + (1 + 0)P (K1, y) + ((y + 1)mn−m − 1)((y + 1)1 − 1)

= ((y + 1)n−1 − 1)m + y(y + 1)mn−m.

Theorem 3.11. For a Fn,

P (Fn, y) = (y2 + 2y)n + y(y + 1)2n,

and

Ipdom(Fn) = log(3n + 22n)− 1

3n + 22n

[ n∑
i=1

(
2n

i− 1

)
log

(
2n

i− 1

)
+

2n∑
i=n+1

((
n

i− n

)
22n−i +

(
2n

i− 1

))
log

((
n

i− n

)
22n−i +

(
2n

i− 1

))]
.

Proof. According to Theorem 3.9, since Fn ≃ K1 ∨ nK2,
P (Fn, y) = (1 + 0)P (K1, y) + (1 + 0)P (nK2, y) + ((y + 1)1 − 1)((y + 1)2n − 1)

= (y2 + 2y)n + y(y + 1)2n.
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Since, P (Fn, y) = (y2+2y)n+y(y+1)2n, (γp)s(Fn) = 3n+22n. First, we expand (y2+2y)n using
the binomial theorem, which gives (y2 + 2y)n =

n∑
k=0

(
n

k

)
y2k · 2n−k · yn−k =

n∑
k=0

(
n

k

)
2n−kyn+k.

Thus, the powers of y from this expansion range from yn (when k = 0) to y2n (when k = n), and
the coefficient of yn+k is

(
n

k

)
2n−k.

Next, we expand y(y+1)2n. Then, y(y+1)2n =

2n∑
k=0

(
2n

k

)
yk+1. Therefore, the powers of y from

this expansion range from y1 (when k = 0) to y2n+1 (when k = 2n), and the coefficient of yk+1

is
(
2n

k

)
. For 1 ≤ i ≤ n, so the coefficient of yi is

(
2n

i− 1

)
. For n + 1 ≤ i ≤ 2n, both expansions

contribute and the coefficient of yi is
(

n

i− n

)
22n−i +

(
2n

i− 1

)
.

Thus, pi(Fn) are given by,

pi(Fn) =


(

2n

i− 1

)
, for 1 ≤ i ≤ n,(

n

i− n

)
22n−i +

(
2n

i− 1

)
, for n+ 1 ≤ i ≤ 2n.

Then,

Ipdom(Fn) = log(3n + 22n)− 1

3n + 22n

[ n∑
i=1

(
2n

i− 1

)
log

(
2n

i− 1

)
+

2n∑
i=n+1

((
n

i− n

)
22n−i +

(
2n

i− 1

))
log

((
n

i− n

)
22n−i +

(
2n

i− 1

))]
.

Theorem 3.12. For Cr,s,

P (Cr,s, y) = ((y + 1)r − 1)((y + 1)s) + (y + s)ys−1,

and

Ipdom(Cr,s) = log((2r − 1)2s + (s+ 1))− 1

(2r − 1)2s + (s+ 1)

[ rs∑
i=1

i ̸=s−1,s

((
r + s

i

))
log

((
r + s

i

))

+

((
r + s

s− 1

)
+ s

)
log

((
r + s

s− 1

)
+ s

)
+

((
r + s

s

)
+ 1

)
log

((
r + s

s

)
+ 1

)]
.

Proof. Since Cr,s ≃ Cr ∨Ks, by Theorem 3.9 it follows that,

P (Cr,s, y) = P (Cr ∨Ks; y)

= (1 + 0)P (Cr, y) + (1 +
s

y
)P (Ks, y) + ((y + 1)r − 1)((y + 1)s − 1)

= ((y + 1)r − 1)(y + 1)s + (y + r)ys−1.
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Since, P (Cr,s, y) = ((y + 1)r − 1)((y + 1)s) + (y + s)ys−1, (γp)s(Cr,s) = (2r − 1)2s + (s + 1). To
find the coeffient of yi in P (Cr,s, y), first calculating expansion of ((y+1)r − 1)((y+1)s) using the
binomial theorem. Then,

((y + 1)r − 1)((y + 1)s) =

(
r∑

i=1

(
r

i

)
yi

) s∑
j=0

(
s

j

)
yj

 =

r∑
i=1

s∑
j=0

(
r

i

)(
s

j

)
yi+j .

Additionally, expanding (y + s)ys−1 adds terms ys and sys−1 to the final expression.

The coefficients of yi are derived as follows: for 1 ≤ i ≤ rs and i ̸= s, s − 1, the coefficient is
i∑

j=0

(
r

i− j

)(
s

j

)
=

(
r + s

i

)
.Now, the coefficient of ys−1 is

i∑
j=0

(
r

s− 1− j

)(
s

j

)
+s =

(
r + s

s− 1

)
+s.

Finally, the coefficient of ys is
i∑

j=0

(
r

s− j

)(
s

j

)
+1 =

(
r + s

s

)
+1. Thus, through the use of the

PDP expansion, pi(Cr,s) =

(
r + s

i

)
for 1 ≤ i ≤ rs & i ̸= s, s − 1, Ps−1(Cr,s) =

(
r + s

s− 1

)
+ s and

Ps(Cr,s) =

(
r + s

s

)
+ 1.

Hence,

Ipdom(Cr,s) = log((γp)s)−
1

(γp)s

rs∑
i=1

pi(Cr,s) log(pi(Cr,s))

= log((2r − 1)2s + (s+ 1))− 1

(2r − 1)2s + (s+ 1)

[ rs∑
i=1

i̸=s−1,s

((
r + s

i

))
log

((
r + s

i

))

+

((
r + s

s− 1

)
+ s

)
log

((
r + s

s− 1

)
+ s

)
+

((
r + s

s

)
+ 1

)
log

((
r + s

s

)
+ 1

)]
.

Theorem 3.13. For Fm,n,

P (Fm,n, y) = (y +m)ym−1 + ((y + 1)n − 1)(y + 1)m,

and

Ipdom(Fm,n) = log ((2n − 1)2m +m+ 1)− 1

(2n − 1)2m +m+ 1

[ mn∑
i=1

i̸=m−1,m

((
n+m− 1

m− 1

)
+m− 1

)

log

((
n+m− 1

m− 1

)
+m− 1

)
+

((
mn

n− 1

)
+m− 1

)
log

((
n+m

m

))
+

(
n+m

m

)
log

(
n+m

m

)]
.
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Proof. Since Fm,n ≃ Km ∨ Pn, by Theorem 3.9 it follows that,

P (Fm,n, y) = P (Km ∨ Pn; y)

= (1 +
m

y
)P (Km, y) + (1 + 0)P (Pn, y) + ((y + 1)m − 1)((y + 1)n − 1)

= (y +m)ym−1 + ((y + 1)n − 1)(y + 1)m.

SinceP (Fm,n, y) = (y+m)ym−1+((y+1)n−1)(y+1)m, (γp)s(Fm,n) = (2n−1)2m+m+1. Now,
expand P (Fm,n, y) to get the coefficients of yi. First, expand (y+1)n − 1 = ny+

(
n

2

)
y2 + · · ·+ yn

and (y+1)m = 1+my+

(
m

2

)
y2+ · · ·+ym. Therefore, P (Fm,n, y) = ym+mym−1+(ny+

(
n

2

)
y2+

· · ·+ yn)(1 +my +

(
m

2

)
y2 + · · ·+ ym).

Then the coefficients of yi in P (Fm,n, y) are derived as follows:

for i ̸= m− 1,m, the coefficient of yi is
i∑

k=0

(
n

k

)(
m

i− k

)
− 1 =

(
n+m

i

)
− 1.

For i = m− 1, the coefficient of yi ism+

m−1∑
k=0

(
n

k

)(
m

(m− 1)− k

)
− 1 = m+

(
n+m− 1

m− 1

)
− 1.

For i = m, the coefficient of yi is 1 +
m∑

k=0

(
n

k

)(
m

m− k

)
− 1 =

m∑
k=0

(
n

k

)(
m

k

)
=

(
n+m

m

)
.

Therefore from the above, we get,

pi(Fm,n) =

(
n+m

i

)
− 1, for 1 ≤ i ≤ mn, i ̸= m− 1,m,

pi(Fm,n) =

(
n+m− 1

m− 1

)
+m− 1, for i = m− 1,

pi(Fm,n) =

(
n+m

m

)
, for i = m.

Also γp(Fm,n) = 1. Hence,

Ipdom(Fm,n) = log((γp)s)−
1

(γp)s

mn∑
i=1

pi(Fm,n) log(pi(Fm,n))

= log ((2n − 1)2m +m+ 1)− 1

(2n − 1)2m +m+ 1

[ mn∑
i=1

i ̸=m−1,m

((
n+m− 1

m− 1

)
+m− 1

)

log

((
n+m− 1

m− 1

)
+m− 1

)
+

((
mn

n− 1

)
+m− 1

)
log

((
n+m

m

))
+

(
n+m

m

)
log

(
n+m

m

)]
.
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4 Comparison of Domination and Power Domination Entropies

Figure 3 displays the graphs used in the numerical experiments in an ascending order based
on their topological complexity (TC), which is determined by adding up all of the adjacencies of
each subgraph [3]. It seems to be a more reliable and is a non-entropy based method of assessing
complexity that makes use of the subgraph count concept. Idom values are extracted from [27]. In
addition, Table 1 lists the power domination entropy alongside the domination entropy for each of
the 21 graphs. The power dominating polynomials of the graphs shown in Figure 3 can be utilised.

Figure 3: 21 simple connected graphs on 5 nodes is arranged in order of topological complexity (TC).

P (1, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (2, y) = y5 + 5y4 + 10y3 + 9y2 + y,

P (3, y) = y5 + 5y4 + 10y3 + 4y2 + y,

P (4, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (5, y) = y5 + 5y4 + 10y3 + 9y2 + 3y,

P (6, y) = y5 + 5y4 + 10y3 + 10y2 + 4y,

P (7, y) = y5 + 5y4 + 10y3 + 10y2 + 3y,

P (8, y) = y5 + 5y4 + 10y3 + 8y2 + y,

P (9, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (10, y) = y5 + 5y4 + 10y3 + 8y2 + y,

P (11, y) = y5 + 5y4 + 10y3 + 10y2 + 2y,

P (12, y) = y5 + 5y4 + 10y3 + 10y2 + 4y,

P (13, y) = y5 + 5y4 + 10y3 + 10y2 + 4y,

P (14, y) = y5 + 5y4 + 10y3 + 10y2 + 4y,

P (15, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (16, y) = y5 + 5y4 + 10y3 + 10y2 + 2y,

P (17, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,
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P (18, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (19, y) = y5 + 5y4 + 10y3 + 10y2 + 4y,

P (20, y) = y5 + 5y4 + 10y3 + 10y2 + 5y,

P (21, y) = y5 + 5y4 + 10y3 + 10y2 + 5y.

The power domination entropy is calculated using the formula defined in Definition 1.9.
Example 4.1. Let G10 be the tenth graph in Figure 3. Then, (γp)s(G10) = 25 and,

Ipdom(G10) = − 1

25
log

(
1

25

)
− 8

25
log

(
8

25

)
− 10

25
log

(
10

25

)
− 5

25
log

(
5

25

)
− 1

25
log

(
1

25

)
= 1.89.

Table 1: Idom, Ipdom and TC of 21 graphs.

Graphs Idom Ipdom TC
1 1.712 2.062 60
2 1.688 1.879 76
3 2.022 1.877 100
4 1.704 2.062 160
5 1.741 2.0176 172
6 1.713 2.0386 290
7 1.712 2.0027 212
8 1.952 1.8907 230
9 1.719 2.062 482
10 1.890 1.8907 292
11 1.719 1.9485 504
12 1.741 2.0386 511
13 1.927 2.0386 566
14 1.709 2.0386 1278
15 1.890 2.062 1316
16 1.719 1.9485 1394
17 1.923 2.062 1396
18 1.863 2.062 3216
19 1.709 2.0386 3290
20 2.001 2.062 7806
21 2.060 2.062 18180

Table 1 offers numerous outcomes that can be obtained. Since the domination polynomial and
power domination polynomial of G10 are equal, all terms of Idom and Ipdom are equal.

Therefore, one can get that Idom(G10) = Ipdom(G10). The value of Ipdom presented in the table
shows that third graph in Figure 3 attains the minimum entropy because the number of power
dominating sets with cardinality 1 and 2 is very low compared to other graphs. The graphs 1,
4, 9, 15, 17, 18, 20, 21, 5, 6, 7, 12, 13, 14, and 19 in Figure 3 have the largest power dominating
entropy measures in the increasing order. The power domination number of these graphs is one.
It is evident that the highest value of the power domination entropy measure is present when the
number of power dominating sets with varying cardinalities is nearly equal.

In the case of a complete graph, Idom and Ipdom are very high and the same, since the domi-
nation polynomial and power domination polynomial of a complete graph are same. The graphs
1 and 7 have the same Idom but different Ipdom. This suggests that there is some similarity in the
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complexity of the two graphs. Graphs with low complexity are invariably associated with low
entropy values.

Examining Table 1 makes it clear that all of the measures aside from TC are very degenerate
and inadequate at differentiating between structures. The goal of mathematical chemists is to find
a suitable measure that can distinguish each graph individually. This implies that the values of
non-isomorphic networks should differ. If two non-isomorphic graphs are of the same complexity,
it can be difficult to find a suitable complexity measure that would yield a result that is precisely
the same for both non-isomorphic graphs.

5 Conclusions

The domination entropy of cocktail party, barbell, and book graphs is determined in this work.
The power domination entropy is defined using the power dominating sets of graphs and derived
for some graphs, such as cycle, star, path, complete, and so on. The applications of the domina-
tion and power domination polynomials, respectively, yield the number of dominating and power
dominating sets in a graph

There are certain unresolved issues for further research. Investigating the domination and
power domination entropy, similar graph structures can be found in the future, and their domina-
tion and power domination polynomials can be derived. More recently, the roots of domination
and power domination polynomials have been studied and can also be studied for other graphs.
Furthermore, the domination and power domination entropies of maximal and minimal graphs
can also be studied.

Acknowledgement The authors would like to thank the anonymous reviewers and editor for their
detailed comments that improved the presentation and quality of the paper.

Conflicts of Interest The authors declare no conflict of interest.

References

[1] H. A. Ahangar & M. Khaibari (2017). Graphs with large Roman domination number.
Malaysian Journal of Mathematical Sciences, 11(1), 71–81.

[2] S. Alikhani & Y. h. Peng (2014). Introduction to domination polynomial of a graph. Ars
Combinatoria, 114, 257–266. https://doi.org/10.48550/arXiv.0905.2251.

[3] D. G. Bonchev (1995). Kolmogorov’s information, Shannon’s entropy, and topological com-
plexity ofmolecules. Bulgarian chemical communications, 28(3-4), 567–582.

[4] D. G. Bonchev (1983). Information Theoretic Indices for Characterization of Chemical Structures.
Research Studies Press, Hertfordshire.

[5] D. G. Bonchev (2009). Encyclopedia of Complexity and Systems Science, volume 5, chapter
Information Theoretic Complexity Measures., pp. 4820–4838. Springer, New York. https:
//doi.org/10.1007/978-0-387-30440-3_285.

285

https://doi.org/10.48550/arXiv.0905.2251
https://doi.org/10.1007/978-0-387-30440-3_285
https://doi.org/10.1007/978-0-387-30440-3_285


K. Geethu and A. Parthiban Malaysian J. Math. Sci. 19(1): 269–287(2025) 269 - 287

[6] D. G. Bonchev & G. A. Buck (2005). Complexity in Chemistry, Biology, and Ecology, chapter
Quantitative Measures of Network Complexity, pp. 191–235. Springer, Boston, MA. https:
//doi.org/10.1007/0-387-25871-X_5.

[7] D. G. Bonchev & D. Rouvray (2003). Complexity in Chemistry: Introduction and Fundamentals
volume 7 of Mathematical Chemistry. Taylor and Francis, Boca Raton, Florida.

[8] D. G. Bonchev &D. Rouvray (2005). Complexity in Chemistry, Biology, and Ecology. Mathemat-
ical and Computational Chemistry. Springer, New York. https://doi.org/10.1007/b136300.

[9] B. Brimkov, R. Patel, V. Suriyanarayana&A. Teich. Power domination polynomials of graphs.
arXiv: Combinatorics 2018. https://doi.org/10.48550/arXiv.1805.10984.

[10] S. Cao, M. Dehmer & Z. Kang (2017). Network entropies based on independent sets and
matchings. Applied Mathematics and Computation, 307, 265–270. https://doi.org/10.1016/j.
amc.2017.02.021.

[11] Z. Chen, M. Dehmer, F. Emmert-Streib, A. Mowshowitz & Y. Shi (2017). Toward measuring
network aesthetics based on symmetry. Axioms, 6(2), Article ID: 12. https://doi.org/10.3390/
axioms6020012.

[12] M. Dehmer (2008). Information processing in complex networks: Graph entropy and infor-
mation functionals. Applied Mathematics and Computation, 201(1-2), 82–94. https://doi.org/
10.1016/j.amc.2007.12.010.

[13] M. Dehmer, F. Emmert Streib, Z. Chen, X. Li & Y. Shi (2016). Mathematical Foundations and
Applications of Graph Entropy volume 6 ofQuantitative andNetwork Biology. JohnWiley& Sons,
Weinheim. https://doi.org/10.1002/9783527693245.

[14] M. Dehmer & A. Mowshowitz (2011). A history of graph entropy measures. Information
Sciences, 181(1), 57–78. https://doi.org/10.1016/j.ins.2010.08.041.

[15] J. L. Green, A. Hastings, P. Arzberger, F. J. Ayala, K. L. Cottingham, K. Cuddington, F. Davis,
J. A. Dunne, M.-J. Fortin, L. Gerber et al. (2005). Complexity in ecology and conservation:
mathematical, statistical, and computational challenges. BioScience, 55(6), 501–510. https:
//doi.org/10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2.

[16] R. Hasni, D. A. Mojdeh & S. A. Bakar (2024). Domination (totally) dot-critical of Harary
graphs. Malaysian Journal of Mathematical Sciences, 18(1), 1–7. https://doi.org/10.47836/
mjms.18.1.01.

[17] H. Hosoya (1971). Topological index. a newly proposed quantity characterizing the topolog-
ical nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of
Japan, 44(9), 2332–2339. https://doi.org/10.1246/bcsj.44.2332.

[18] S. Jahari & S. Alikhani (2016). OnD-equivalence classes of some graphs. Bulletin of the Geor-
gian National Academy of Sciences, 10(1), 12–19. https://doi.org/10.48550/arXiv.1511.00159.

[19] T. Kotek, J. Preen & P. Tittmann. Domination polynomials of graph products. arXiv: Combi-
natorics 2013. https://doi.org/10.48550/arXiv.1305.1475.

[20] A. Mowshowitz (1968). Entropy and the complexity of graphs: I. An index of the relative
complexity of a graph. The Bulletin of Mathematical Biophysics, 30, 175–204. https://doi.org/
10.1007/BF02476948.

[21] A. Mowshowitz & M. Dehmer (2012). Entropy and the complexity of graphs revisited. En-
tropy, 14(3), 559–570. https://doi.org/10.3390/e14030559.

286

https://doi.org/10.1007/0-387-25871-X_5
https://doi.org/10.1007/0-387-25871-X_5
https://doi.org/10.1007/b136300
https://doi.org/10.48550/arXiv.1805.10984
 https://doi.org/10.1016/j.amc.2017.02.021
 https://doi.org/10.1016/j.amc.2017.02.021
 https://doi.org/10.3390/axioms6020012
 https://doi.org/10.3390/axioms6020012
 https://doi.org/10.1016/j.amc.2007.12.010
 https://doi.org/10.1016/j.amc.2007.12.010
 https://doi.org/10.1002/9783527693245
https://doi.org/10.1016/j.ins.2010.08.041
 https://doi.org/10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2
 https://doi.org/10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2
https://doi.org/10.47836/mjms.18.1.01
https://doi.org/10.47836/mjms.18.1.01
https://doi.org/10.1246/bcsj.44.2332
https://doi.org/10.48550/arXiv.1511.00159
https://doi.org/10.48550/arXiv.1305.1475
https://doi.org/10.1007/BF02476948
https://doi.org/10.1007/BF02476948
https://doi.org/10.3390/e14030559


K. Geethu and A. Parthiban Malaysian J. Math. Sci. 19(1): 269–287(2025) 269 - 287

[22] A.Mowshowitz &V.Mitsou (2009). Entropy, Orbits, and Spectra of Graphs, chapter 1, pp. 1–22.
John Wiley & Sons, Ltd, Weinheim. https://doi.org/10.1002/9783527627981.ch1.

[23] M. Randić & D. Plavšić (2002). On the concept of molecular complexity. Croatica Chemica
Acta, 75(1), 107–116.

[24] M. Randić & D. Plavsić (2003). Characterization of molecular complexity. International Jour-
nal of Quantum Chemistry, 91(1), 20–31. https://doi.org/10.1002/qua.10343.

[25] N. Rashevsky (1955). Life, information theory, and topology. The Bulletin of Mathematical
Biophysics, 17, 229–235. https://doi.org/10.1007/BF02477860.

[26] R. W. Rycroft & D. E. Kash (1999). The Complexity Challenge: Technological Innovation for the
21st Century. Science, Technology, and the International Political Economy. Pinter, London.

[27] B. Şahin (2022). New network entropy: The domination entropy of graphs. Information
Processing Letters, 174, Article ID: 106195. https://doi.org/10.1016/j.ipl.2021.106195.

[28] C. E. Shannon &W. Weaver (1964). The Mathematical Theory of Communication. University of
Illinois Press, Urbana.

[29] P. Wan, X. Zhang, B. Wu & X. Li (2020). On graph entropy measures based on the number
of independent sets and matchings. Information Sciences, 516, 491–504. https://doi.org/10.
1016/j.ins.2019.11.020.

[30] M. Zhao, L. Kang & G. J. Chang (2006). Power domination in graphs. Discrete Mathematics,
306(15), 1812–1816. https://doi.org/10.1007/978-3-030-51117-3_16.

287

https://doi.org/10.1002/9783527627981.ch1
 https://doi.org/10.1002/qua.10343
https://doi.org/10.1007/BF02477860
https://doi.org/10.1016/j.ipl.2021.106195
https://doi.org/10.1016/j.ins.2019.11.020
https://doi.org/10.1016/j.ins.2019.11.020
https://doi.org/10.1007/978-3-030-51117-3_16

	Introduction
	Basic definitions

	Related Works
	Main Results
	Domination entropy of some graphs
	Power domination entropy of some graphs

	Comparison of Domination and Power Domination Entropies
	Conclusions

